Remember these facts.....
In order to protect our analyzers on an extractive system we will have to do certain things. We might have to lower the pressure- answer - regulator. We might have to eliminate water- answer - chiller. More than likely we will always have to filter the sample. It would do us no good to put in a filter that has such tiny holes that it would plug immediately or not let through the sample. It would also do us zero good if we were to put in a filter that has holes big enough to let in harmful particulates to our analyzer. So the proper filter size is a must.
When we discuss filter mesh size we refer to this as microns. How big is one micron? .001mm
Chillers knock out moisture
Thermoelectric cooling uses the Peltier effect to create a heat flux between the junction of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current. Such an instrument is also called a Peltier device, Peltier heat pump, solid state refrigerator, or thermoelectric cooler (TEC). They can be used either for heating or for cooling (refrigeration), although in practice the main application is cooling. It can also be used as a temperature controller that either heats or cools.[1]
This technology is far less commonly applied to refrigeration than vapor-compression refrigeration is. The main advantages of a Peltier cooler (compared to a vapor-compression refrigerator) are its lack of moving parts or circulating liquid, and its small size and flexible shape (form factor). Its main disadvantage is high cost and poor power efficiency. Many researchers and companies are trying to develop Peltier coolers that are both cheap and efficient.
The vortex tube, also known as the Ranque-Hilsch vortex tube, is a mechanical device that separates a compressed gas into hot and cold streams. It has no moving parts.
Pressurized gas is injected tangentially into a swirl chamber and accelerated to a high rate of rotation. Due to the conical nozzle at the end of the tube, only the outer shell of the compressed gas is allowed to escape at that end. The remainder of the gas is forced to return in an inner vortex of reduced diameter within the outer vortex.
There are different explanations for the effect and there is debate on which explanation is best or correct.
What is usually agreed upon is that the air in the tube experiences mostly "solid body rotation", which means the rotation rate (angular velocity) of the inner gas is the same as that of the outer gas. This is different from what most consider standard vortex behavior — where inner fluid spins at a higher rate than outer fluid. The (mostly) solid body rotation is probably due to the long length of time during which each parcel of air remains in the vortex — allowing friction between the inner parcels and outer parcels to have a notable effect.
It is also usually agreed upon that there is a slight effect of hot air tending to "rise" toward the center, but this effect is negligible — especially if turbulence is kept to a minimum.
One simple explanation is that the outer air is under higher pressure than the inner air (because of centrifugal force). Therefore the temperature of the outer air is higher than that of the inner air.
Another explanation is that as both vortices rotate at the same angular velocity and direction, the inner vortex has lost angular momentum. The decrease of angular momentum is transferred as kinetic energy to the outer vortex, resulting in separated flows of hot and cold gas.[1]
A Vortex cooler works using voodoo. Yes VooDoo..... It's evil.....